Using Prior Data to Inform Model Parameters in the Predictive Performance Equation

نویسندگان

  • Michael G. Collins
  • Kevin A. Gluck
  • Matthew M. Walsh
  • Michael Krusmark
  • Glenn Gunzelmann
چکیده

The predictive performance equation (PPE) is a mathematical model of learning and retention that attempts to capitalize on the regularities seen in human learning to predict future performance. To generate predictions, PPE’s free parameters must be calibrated to a minimum amount of historical performance data, leaving PPE unable to generate valid predictions for initial learning events. We examined the feasibility of using the data from other individuals, who performed the same task in the past, to inform PPE’s free parameters for new individuals (prior-informed predictions). This approach could enable earlier and more accurate performance predictions. To assess the predictive validity of this methodology, the accuracy of PPE’s individualized and prior-informed predictions before the point in time where PPE can be fully calibrated using an individual’s unique performance history. Our results show that the prior data can be used to inform PPE’s free parameters, allowing earlier performance predictions to be made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Prior Data to Inform Initial Performance Predictions of Individual Students

The predictive performance equation (PPE) is a mathematical model of learning and retention that uses regularities seen in human learning to predict future performance. Previous research (Collins, Gluck, Walsh Krusmark & Gunzelmann,, 2016) found that prior data could be used to inform PPE’s free parameters when generating predictions of a group’s aggregate performance, allowing for more accurat...

متن کامل

Comparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches

This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...

متن کامل

An Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model

In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...

متن کامل

Improving the stability of the power system based on static synchronous series compensation equipped with robust model predictive control

Low-frequency oscillations (LFO) imperil the stability of the power system and reduce the Capacity of transmission lines. In the power systems, FACTS devices and Power System stabilizers are used to improve the stability. Static synchronous series compensators is one of the most important FACTS devices. This paper investigates the damping of LFO with static synchronous series compensator (SSSC)...

متن کامل

VLE Predictions of Strongly Non-Ideal Binary Mixtures by Modifying Van Der Waals and Orbey-Sandler Mixing Rules

By proposing a predictive method with no adjustable parameter and by using infinite dilution activity coefficients of components in binary mixtures obtained from UNIFAC model, the binary interaction parameters (k12) in van der Waals mixing rule (vdWMR) and Orbey-Sandler mixing rule (OSMR) have been evaluated. The predicted binary interaction parameters are used in Peng-Robinson-S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016